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ADVANCE continuous integration 
system key for ENDF QA
• Check new evaluations every commit
• Uses customer codes (NJOY, FUDGE, PREPRO)
• Automates ENDF Phase I testing
• Build reports for variety of needs

Changes Status



In process of upgrading backend to 
Python3, BuildBot 2.10 on new server
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Developing resonance 
quality report
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trouble in the resonance region?
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Resonance metrics to consider

Measures of energies
• Long range behavior

• Average spacing vs. E
• Cumulative level 

distribution
• Short range behavior

• Nearest neighbor spacing 
distribution

• Spacing-spacing correlation
• Dyson-Mehta 𝛥3 statistic
• Other statistics

Measures of widths
• Long range behavior

• Average width vs. E
• Width distribution

• Short range behavior
• Are there short range 

correlations in the widths?  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In most cases, have 
analytic results from 
random matrix theory 

as guide



Typical resonance region
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Cumulative level distribution 
already tells us a lot
• Is the 

average 
spacing 
correct?

• Missing 
levels 
manifest as 
deviations 
from straight 
line
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Neutron incident energy (keV)

n[i=1/2+]+183W[I=1/2−]

RIPL : ⟨D0⟩ = 12.0±1.00 eV

: ⟨D0⟩ = 13.9±0.02 eV

◦ : ⟨D0⟩ = 14.4 eV

ntot
0 = 346

(Mixed J = 0−, 1−)

: ⟨D1⟩ = 189.9±6.51 eV

△ : ⟨D1⟩ = 182.6 eV

ntot
1 = 21

(Mixed J = 1+, 2+)
ENDF/B-VII.1

n+183W cumulative

level distribution

D. Brown, et al. Nucl. Data Sheets 148, 1 (2018)



Application to 55Mn shows good RRR-URR 
transition; before missing lots of levels

 

URRURR



Look at resonance spacingsSpectral Fluctuations:

O. Bohigas and M. J. Giannoni, Lecture Notes in Physics 209 (1984), Springer-Verlag, Heidelberg



Nearest neighbor spacing 
distribution

Bohigas, Giannoni, Schmitt, Phys. Rev. Lett. 52, p. 1 (1984)

Nearest neighbor 
spacing is simply

Di = Ei+1-Ei

So, make a 
histogram with

  
x=Di/D



Can immediately tell that levels are missing 
based on shape or shift in x-axis scaling

Wrong ave level spacing 
pushes distribution to left, 
makes more Poisson-like

A. Nearest-neighbor spacing distribution (NNSD)

The most common eigenvalue test is the nearest-neighbor spacing distribution, the so-called
Wigner surmise. One of the advantages of this statistic is that the effect of missing levels on the
probability density function can be analytically determined.

The nearest-neighbor spacings (the spacings between two adjacent levels) of a perfect GOE
sequence are well described by the Wigner distribution

PGOE(x) =
π

2
xe−πx2/4. (7)

Here x ≡ S/D, where S is a spacing between adjacent levels and D is the average spacing. Since
in practice the level sequence is almost always incomplete, we need the distribution that describes
the spacing distribution of an imperfect sequence. The key difference between the spacing and
width analyses is that the spacings are missed at random. However, an additional difference is
that missing a level means that two nearest-neighbor spacings which should be observed are not,
while one second-nearest-neighbor spacing (corresponding to one intervening level) is included in
the data set although it should not be. Thus, the probability density function for an sequence with
missing levels must reflect the inadvertent presence of these higher order spacings. Also important
is the fact that the experimental value of the average spacing Dobs differs from the true value D
according to D = fDobs. It proves convenient to derive results in terms of Dobs, so we define a
variable z ≡ Sobs/Dobs for that purpose, where Sobs is a spacing between adjacent observed levels,
and Dobs is the observed average spacing. The variables x and z are related by z = fx.

The nearest-neighbor spacing distribution (NNSD) can be written as

P (z) =
∞
∑

k=0

akλP (k; λz), (8)

where the functions P (k, x) represent the probability density functions for the distributions of
spacings when there are k intermediate levels between the two determining the spacings. (There-
fore, P (0, x) will be the nearest-neighbor spacing distribution – the Wigner distribution – given in
Eq. 7.) The parameters ak give the relative contributions of these k-th nearest-neighbor spacing
distributions P (k; λz), and λ is a parameter that characterizes the incompleteness of the sequence.
This form for the probability density function for the spacing distribution of an imperfect sequence
was first introduced as an ansatz in 1981 by Watson, Bilpuch, and Mitchell [19]. The results have
since been formally derived (using different methods) in Refs. [20] and [21]:

P (z) =
∞
∑

k=0

(1 − f)kP (k; z/f); (9)

converting to the variable x yields

P (x) =
∞
∑

k=0

f(1 − f)kP (k; x). (10)

For f = 1 this reduces to the Wigner distribution P (0; x) as it should. For f near 1 the series
converges rapidly – one intervening level is much more likely to be missed than are two, etc. – but
the convergence is slower when a larger fraction of the levels is missed.

Obviously, to perform calculations one needs expressions for the P (k; x) functions which give the
probability that there are k levels contained in a spacing x between two levels. A closely related
set of functions are the E(k; x), which give the probability that a randomly chosen interval of
length x contains exactly k levels. Numerical values for E(k; x) and recursive analytical formulae
for E(k; x) are given in [22]. The P (k; x) functions and the E(k; x) functions are related by a
recursion formula

P (k; x) =
k

∑

j=0

(k − j + 1)
d2

dx2
E(j; x). (11)
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vs.

PP (x) =
xke�x

k!
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Spacings tell 
us a lot more
• Poisson too random: 

has big gaps and big 
clusters

• Picket fence too regular
• GOE just right

• S-L-S-L spacing 
correlation

• Almost as regular as 
picket fence

Expected 
(GOE)

Poisson Picket 
fence 

(Uniform)



𝝆, the spacing-spacing correlation
⇢(Di, Di+1) =corr(Di, Di+1)

=

P
i(Di �D)(Di+1 �D)

P
i(Di �D)2
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S-L-S-L pattern gives correlation coefficient of -0.27 for GOE 



Dyson-Mehta 𝛥3 statistic
• A fancy sounding name 
• Measures “spectral 

stiffness”
• Really just based on 

straight line fit to 
cumulative level 
distribution

• Vary number of steps 
(L) used in fit 

• Know expected slope 
as function of L

E = x * D
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T. A. Brody et al. : Random-matrix physics

complete, because, while our g'(x) values will be ex-
act for the unitary ensemble, they differ by a sma1. 1.
constant ' (independent of r) for GOE; and similarly
then for the cr (y). This error can be eliminated
(French et a/. , 1978) by using either Mehta's value for
v'(0) (=0.286) or the "Wigner surmise" value [(4—7T)/vr

=0.273J as a boundary condition for the cr2(r) and hence
for the g'(r), as well.
For the nearest-neighbor spacing the GOE distribu-

tion is not Gaussian, and its shape is therefore of in-
terest. In the examples given in Sec. I we have seen
that signer's distribution, which may be derived from
the two-dimensional GOE, fits the data quite satisfac-
torily. The results for the GOE of asymptotically
large dimensionality, which have been given by Mehta
(1960) and Gaudin (1961), are only very slightly differ-
ent [a graphical comparison is given in Mehta's book
(1967, Fig. 1.3)], but have in particular different slopes
at the origin. It is of some interest that this slope
(which is hardly measurable with presently available
data) involves the three-point cluster function" Y„
though only its value. at the origin; the specific form is

[—1 + 3Y (0) —Y,(0) —Y'(r)„J
which is valid for all ensembles (Pandey, 1978). For
all three of the standard ensembles (but not, for exam.—
ple, for Poisson) the first three terms cancel when
evaluated exactly, since Y, (0) =(A —I)!, and then the
slope is simply —Y,'(0). For GOE the value is w'/6
[Wigner, as reported in Mehta (1967, p. 128)J whereas
the Wigner value from Eq. (1.5) is v/2. For P=2, 4 it
has been given as zero by Kahn (1963); a zero value
also follows for P=2 from our Eq. (4.24).
It is worth remarking that the results for the number

variance can be extended (Dyson and Mehta, 1963) to
the case where s different independent sequences of
levels are mixed, the fraction of levels belonging to
sequence i being f, (whence gf, =1). The result for an
arbitrary quasistationary ensemble is that

cr', (r) = ~~a"-„(2~+1),
o', (~) = ~~o', (2r+1) .

(5.15)

Using the v2 vs p' relationship of (5.3) we have then
(Pandey, 1978)

(5. 16)
g', (~) = ~[K', (2r) + ~] .

The Eqs. (5. 16) are easily seen, via (5.12) and (5. 13),
to be asymptotically exact, and hence very close to
exact for all values of r; the very small deviations en-
countered with the exact forms must be ascribed to
small errors in (5.3). In going from (5.15) to (5.16)
we have used the result that g;„(r)= 2&,(r/2), which
follows from (5.14), and have assumed also that (5.3)
is valid for binary mixtures. It is curious that this
latter assumption, which is validated by the results,
could not, however, be valid for a many-component
mixture, since that leads to a random (Poisson) spec-
trum, for which the -', term in (5.3) disappears. Note
also that the two ensemble theorems combine with the
relatively simple unitary-ensemble results to produce
asymptotically exact two-point fluctuation measures for
all three ensembles. The real origin of the theorems
is, however, still obscure (Handelman, 1978).
Concerning the direct experimental realization of the

unitary and symplectic ensembles we see that every
QOE spectrum generates two symplectic spectra. More
interesting is that, with an odd target of angular mo-
mentum J„ the two slow-neutron-resonance sequences
(4, + ~), which are conventionally regarded as indepen-
dent, would, if their densities were equal, give directly
two realizations of the unitary spectrum. See Lynn
(1968) for good examples of each of these. Note that
the relative (Zo+ &) densities are determined by the
more or less calculable "spin cutoff" factor, so that one
may verify whether the condition for the unitary case
is in fact satisfied. For an unequal mixture of two GOE
spectra the corresponding calculation has not been done.

(5.14) D. The 6 statistics
a general. k-point extension of which (Pandey, 1979) is
given in Sec., X.C.
Finally, we mention two remarkable theorems which

relate the fluctuations of the three standard ensembles.
The simpler theorem (Mehta and Dyson, 1963) asserts
that the spectra of the symplectic ensemble may be
realized by choosing alternate eigenvalues from the
orthogonal ensemble. The content of the other theorem
(Dyson, 1962c;Gunson, 1962) is that the spectra. ' of the
unitary ensemble may be realized by choosing alternate
eigenvalues from a random superposition (mixing) of
two independent equivalent orthogonal ensembl. es. As
an immediate result of these theorems we have

x+L
b, (~) = min [F(x')—Ax' —B]'dx',

.2L w, a
(5. 17)

where 2L =yD is the interval length, dxI is the stair-
case function with unit steps, and A, B are chosen to
minimize the integral. Alternatively, we may define
(French et af. , 1978)

These measures are concerned with the departure
from uniformity (even spacing) of an observed run of
levels. Depending on whether we describe things in
terms of the distribution function or the density func-
tion, we have two natural definitions. The first (Dyson
and Mehta, 1963) is''

The numerical value depends on the method of cutoff used in
the f sum of Eq. (4.18). With a sharp g-independent cutoff the
approximate values are smaller by 0.07.
For the unitary ensemble the distribution, which has been

given by Kahn (1963), is closer to Gaussian.
7z is as.defined by Dyson (1962c); for Y&(0) all the relative

coordinates are put to zero. See Sec. X.C.

2mzn x -As —BnD ~,a, , (5.18)

in which we are minimizing the (spectral-averaged)

The statistics &~, &2, also introduced by Dyson and Mehta,
are not usually employed, since their variances are signifi-
cantly larger than for &3.

Rev. Mod. Phys. , Vol. 53, No. 3, July 1981



Dyson-Mehta 𝛥3 statistic
• Know expected values of 𝛥3 for picket fence (regular), GOE (realistic) 

and Poisson (random)
• 65Cu indicates significant admixture of resonances from other channel
• 198Pt does NOT indicate complete set of resonances, rather indicates 

quality of fake resonances generated by TARES



Other metrics

• U statistic “thermodynamic energy” 
• Q statistic
• F statistic
• …

• All give essentially same information as 𝛥3



Resonance metrics to consider

Measures of energies
• Long range behavior

• Average spacing vs. E
• Cumulative level 

distribution
• Short range behavior

• Nearest neighbor spacing 
distribution

• Spacing-spacing correlation
• Dyson-Mehta 𝛥3 statistic
• Other statistics

Measures of widths
• Long range behavior

• Average width vs. E
• Width distribution

• Short range behavior
• Are there short range 

correlations in the widths?  
 
 
 
 



Plot average with to show 
consistency between RRR & URR
• Gamma 

widths usually 
small, not 
vary much 

• Neutron 
widths, must 
be careful 
about 
“reduced 
width” in URR



Width distribution commonly 
used to assess for missing levels

• A lot of literature 
using this to 
assess missing 
levels 

• Wrong ave width 
pushes distribution 
to left

• Missing levels 
have small width 



Other ways of displaying width distribution 
are more informative, must investigate

(a) Number plot. The thin red line
represents the behavior expected based on

the data for 0 − 4 keV.

(b) Cumulative sum of reduced widths.

(c) Distribution of reduced widths. The
upper part of the figure shows a

histogram, while the lower portion shows
the probability distribution function. Note

the “hole” in the data for values of
y ≈ 2 − 5 × 10−4.

(d) Nearest-neighbor spacing distribution
for s-wave resonances in the n + 238U

reaction. The probability density function
(upper) and the probability distribution

function (lower) are shown.

FIG. 4: Analysis of s-wave resonances in the n + 238U reaction in the neutron energy range 0 − 20 keV.
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Mitchel, Shriner, 
NDC(NDS)-0561 
(2009)



54Fe capture: group averaged capture resonances 
reveals missing strength from 200 keV - 1 MeV, 
likely from missing p-, d- wave resonances



Mitchell and Shriner missing level 
study INDC(NDS)-0561
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Systematics of 𝝆 & 𝛥3 as function of 
# levels & fraction missing

(a) Median values of U as a function of fm

for the N = 1000 case (lower), and as a
function of N for fm = 0.5 (upper). Error
bars are smaller than the points in some

cases. The solid lines represent the best-fit
function of U(fm, N) given in Eqn. (40).

(b) Median values of Q̂ as a function of fm

for the N = 20 (lower), N = 100 (center),
and N = 1000 (upper) cases. Within the

uncertainties, there is no dependence on N .
The solid lines represent the best-fit

function of Q̂(fm, N) given in Eqn. (41).

(c) Median values of the linear correlation
coefficient ρ as a function of fm for the
N = 20, N = 100, and N = 1000 cases.
Within the uncertainties, there is no

dependence on N . The solid line represents
the best-fit function of ρ(fm, N) given in

Eqn. (42).

FIG. 3: Median values of U (top-left), Q̂ (top-right), and linear correlation coefficient ρ (bottom), respec-
tively.
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(a) The solid lines represent the best-fit
function of f̃ given in Eqn. (38).

(b) The solid lines represent the best-fit
function of ∆3 given in Eqn. (39).

FIG. 2: Median values f̃ as a function of fm (left) and ∆3 (right) for the N = 20 (lower), N = 100 (center),
and N = 1000 (upper) cases, respectively. Within the uncertainties, there is no dependence on N .

The reason that we take Nm > N is to eliminate any levels whose energies might lie outside the
semicircle due to their random nature. For the N central levels of the spectrum, a set of new
energy levels which have uniform level density are defined by

E′
i = N(Ei), (37)

where N(E) is given by Eq. (36). These then serve as the eigenvalues for the various analyses.
To simulate missing levels, we follow a similar procedure but start with a larger spectrum and

randomly remove levels from the interior of the spectrum until the desired value of N is achieved.
For all these simulations, we find it convenient to express the results in terms of the missing fraction
fm. We have chosen to simulate missing fractions fm of ≈ 0.1, 0.2, 0.3, 0.4, and 0.5 (in addition
to the complete spectra discussed above, which correspond to fm = 0). For each value of N and
each value of fm, 2500 new spectra are generated.

Once the ensemble of spectra is generated for a given choice of N and fm, we calculate the
statistic of interest for each of the 2500 spectra. Each ensemble is then characterized by its median
with uncertainties estimated based on the 16th and 84th percentiles of the ensemble. A number
of the statistics in question produce asymmetric distributions, and therefore the median value,
representing the point at which half of the values should be larger and half smaller, seems more
likely to represent what one might obtain from a single experimental spectrum than does the more
common mean. Similarly, these empirical estimates of uncertainty also give a range of values that
better characterize the expectations for the purposes discussed here. We then utilize standard
fitting techniques to determine a function that describes the median behavior as a function of
both N and fm. In most cases, a linear description proves appropriate when either N or fm is
varied by itself. Cross-terms involving both N and fm are sometimes necessary for a simultaneous
description in terms of both variables. The following sections summarize the fits we have identified
for the various statistics.
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Status
• Lab report detailing system available (BNL-209313-2018-INRE)
• Aiming for rollout of report before next CSEWG
• Investigating combining width & Dyson-Mehta metrics for more 

holistic estimate of missing/miss assigned levels
• Investigating RRR-URR constancy approaches
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We detail two software tools, now integrated into the fudge code system. The first tool, mcres.py,
can be used to generate stochastic ensembles of resonances which are both consistent with the
expectations of the Gaussian Orthogonal Ensemble of Random Matrix Theory and with the level
densities and widths encoded in ENDF formatted files. The second tool, grokres.py, can be used to
assess global and local features of sequences of resonances found in ENDF files and make comparisons
to known results from Random Matrix Theory. We apply these tools to 54Fe and other nuclei.
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I. INTRODUCTION

Neutron induced reactions for neutrons with energies
below roughly 1 MeV exhibit large fluctuations in the
reaction cross sections and other observables. When re-
solved, these fluctuations show clear resonance structure
that has been successfully explained with R-matrix the-
ory. These resonances are interpreted as compound nu-
clei, that is, unbound excited states of the nucleus formed
from the merger of the target nucleus and the incident
neutron. Given the technological impact of neutron reac-
tions in the areas of energy, security, radiation shielding,
etc., understanding these cross sections and associated
observables is paramount.
The typical middle mass nucleus has hundreds if not

thousands of visible resonances in their reaction cross sec-
tions. Although we can measure the width and location
of a resonance, we cannot predict its properties from first
principals except in a few cases for very light nuclei. At
the lowest neutron energies, the cross sections are domi-
nated by large s-wave resonances. An s-wave resonance


